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Abstract-The theory outlined in Part I is applied to the problem of a beam, supported at both ends, struck
transversely at any point by a mass which subsequently adheres to the beam. For sufficiently long beams,
the resulting moving discontinuities in slope and velocity do not propagate to the ends of the beam, and for
this case the solution is obtained for the non-linear strain-hardening law used in Part I. A simpler
approximate solution is derived for the case of low impact velocity and/or slight strain hardening. For
shorter beams, the propagating discontinuities may undergo one or more successive reflections at the end
points and at the point of initial impact. The deformation after such reflections is analysed, for linear
strain-hardening, in the final two sections. Some particularly simple results are found in the case of central
impact.

1. INTRODUCTION
The general theory of the behaviour of ideal fibre-reinforced rigid-plastic beams was outlined in
Part I [1], which also gives references to other work. In this paper we apply this theory to a
beam, supported at both ends, struck by a mass 2M at any point. The support conditions (for
example, simple support or clamping) at the ends do not affect the main features of the solution,
because the fibre tensions, which do not influence the deformation, adjust to equilibriate any
couples which are applied to the ends of the beam.

The notation is as in Part I. Initially the beam lies along the X -axis from X = - L to X = L
and it is struck at time T =0 at the point X = Xo= xoL by a mass 2M moving in the Y -direction;
without loss of generality it is assumed that xo;;' O. The mass subsequently adheres to the beam.
We seek solutions in which initially a segment of the beam Xo- A(T) < X < Xo+ A(T) moves
as a rigid body with speed V(T) in the Y-direction, with discontinuities in slope and speed at
Xo± A(T) propagating to the right and left respectively. The remainder of the beam is at rest.
The configuration is illustrated in Fig. 1.

For sufficiently small values of a, w{3 and Xo, the beam comes to rest before the discontinuity
at X = A(T) reaches the end X = L of the beam. The solution for this case (a long beam) is
given in Sections 2 and 3, for general values 'of n. For larger values of a, w{3 and Xo (a short
beam), the right-hand discontinuity is reflected at X = L. For sufficiently large values of the
parameters, further reflections may occur at X =- L, X =Xo and X =L. The theory for short
beams is described in Sections 4 and 5, for the case n = 1 of a linear strainhardening material.

In [2], Jones has given the solution for a long beam in the linear strain-hardening case, and
has compared the results with the corresponding results for an isotropic beam.

A discussion of the solutions is given at the end of Part III.

2, GENERAL SOLUTION FOR A LONG BEAM

The assumed configuration is illustrated in Fig. 1. The slope of the right-hand half of the
moving segment A'A is denoted by ft(x) so that, in the non-dimensional variables defined in
Part I,

{

/J(X), xo<x<xo+a(t),

y= -/J(2xo-x), xo-a(t)<x<xo,

0, -1 <x <Xo- a(t) and xo+a(t)<x < 1.

Here Xo = Xol L and, as in Part I, it is assumed that Qp has the form

(2.1)

55 VOL. 13 NO. 9-D 833



834 L. SHAW and A. 1. M. SPENCER

y

I V(T)

Xo-A, T) Xo X
-L 0 L

Fig. I. Impact of a long beam with fixed ends. Assumed form of deformation.

Then the governing equations are as follows:

(a) Equation of motion of the segment Xo - a < x < Xo +a:

(2.2)

(b) Dynamic jump condition at x = Xo + a:

(c) Kinematic jump condition at x = Xo + a:

v = -tift(xo+ a).

(2.3)

(2.4)

Relations similar to (2.3) and (2.4) are given by the jump conditions at x = Xo - a, but these
merely confirm the symmetry of the deformed segment about x = xo. Note that (2.2), (2.3) and
(2.4) can be obtained from (3.8), (3.10) and (3.11) of Part I by setting VI = v, V2 = 0 and
!(x) = ft(x). The initial conditions are

V = I, a = 0 when t = O.

By adding (2.2) and (2.3), then integrating and inserting the initial conditions, we obtain

(a +a)v = a - (3-2 t.

This expresses balance of linear momentum for the whole beam. From (2.3) and (2.4)

Then from (2.5) and (2.6)

where, as in Part I, q = 2n/(n + 1). With the initial conditions, (2.7) integrates to give

We denote

(2.5)

(2.6)

(2.7)

(2.8)

and then (2.8) can be written

(2.9)
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and we note that a = at when t = t1. Then (2.5) can be expressed as

(l+~)v = I-~,
a tl
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(2.10)

(2.11)

so that v =0 when t = h. From (2.10) and (2.11) we obtain v as a function of a or of t, as

(2.12)

(2.13)

Also from (2.3), (2.4) and (2.12)

The deflection Lu(x, t) of the beam is given by

{

- {O+Glt> 1M) d~, Xo os;; x os;; Xo + a(t),

u(x, t) = x

0, -los;;xos;;xo-a(t)andxo+a(t)os;;xos;;l,

and

(2.14)

(2.15)

u(xo - ~, t) = u(xo + ~, t),

The value of Q in the rigid segments and the tensions in the singular fibres are given by
(2.12) and (2.13) of Part I. It can be verified that the yield condition is not violated in the rigid
segments and that the rate of plastic working at the discontinuities is positive. These conditions
are also satisfied by the solutions given later in this paper and in Part III, and they will not be
explicitly mentioned in connection with each separate solution.

The first stage of the deformation terminates when either (a) the beam comes to rest. Then
v = 0, and a = at and t = h; or (b) the discontinuity x =Xo+ aU) reaches the end x = I of the
beam. In this case a = 1- Xo and, from (2.10),

(2.16)

If II < t2, or equivalently Xo+ al < I, the motion is completed before the discontinuity
reaches the end of the beam, and the results of this section give the complete solution. In our
terminology, this is the case of a long beam. In terms of the parameters a, {J, wand xo, the
condition t1 < h for the beam to be a long beam is, from (2.9) and (2.16),

(
1- XO)q

(w{J)q < I +-a- -1. (2.17)
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(2.18)

the results of this section hold for t,,;;;; t2, but for t > l2 the solution takes a
different form, which is considered in Sections 4 and 5.

The results simplify considerably in the case of linear strain-hardening, q = 1. For a long
beam, and Xo =0, the solution for q = 1 was given by Jones [2]. For use later, we give the main
results for any value of Xo and q = l. Equations (2.9) reduce to tl = afJ2, al = aUJfJ, so that (2.10)
becomes

a = UJtlfJ.

Equations (2.13) and (2.14) reduce to

UJfJV = aUJfJ - (UJtlfJ)
a +(UJt!fJ) ,

2f( )- {a(l+UJfJ) 1}- (aUJfJ-a)UJ 1 Xo+ a - - - - •
a+a a+a

Hence from (2.15) and (2.19) the deflection is given by

{ (
UJfJ-lt +a) _I }

UJ
2
u(x, t) = a(l +UJfJ) log Ix _xol +a +Ix - xol- UJfJ t,

(2.19)

(2.20)

(2.21)

(2.22)

for Ix - xol,,;;;; UJfJ-lt, and u(x, t) = 0 elsewhere. The condition (2.17) for a long beam reduces to
aUJfJ < 1- Xo; if this is satisfied (2.19H2.22) give the solution up to the time tl = afJ2 at which
the beam comes to rest. If aUJfJ > 1- xo, the above solution is valid for t,,;;;; t2 = UJ -I fJ( 1- xo),
after which the solution takes the form described in Sections 4 and 5.

The solution of this section also gives the solution for a long cantilever beam struck at its
tip. If we set Xo = 0, so that the solution is symmetrical about x = 0, then the solution in
o< x < 1 can be interpreted as that for a cantilever beam of length L, built in at X = Land
struck at its tip X = 0 by a mass M moving in the Y -direction with speed Vo. The solution is
complete provided that the condition (2.17) (with Xo = 0) is satisfied, so that the discontinuity
does not propagate to x = l. This problem also was discussed by Jones [2] for the case of
linear strain-hardening. The case in which (2.17) is not satisfied is considered in Section 4. More
general problems for cantilever beams are described in Part III.

3. SOLUTION FOR lJJfJ « 1

As was mentioned in Section 7 of Part I, the condition UJfJ ~ 1 requires low impact velocity
or slight strain-hardening or both. It is also assumed that q-I is of order one. Then (2.9) gives
approximately

(3.1)

so that alIa ~ l,andhenceala <c l.Therefore, to leadingorderin UJfJ,(2.10) and (2.12H2.14) become

a q( t)qal - a = - (UJfJ) 1- - ,
q It

t
v=l-

tl'

(3.2)

(3.3)

(3.4)
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{
q(a l - a)}(2-q

)/q

w
2fl(XO+ a) = - a .

Hence, from (2.15), for Ix - xol < a(t)
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(3.5)

(3.6)

The condition (2.17) shows that, when wf:J ~ 1, the beam may be regarded as a long beam
except possibly when a ~ 1 (a heavy striker) or 1- Xo ~ 1, in which case the point of impact is
close to the end of the beam. Neither of these cases seems to be of major interest, and they are
excluded from further consideration.

It is interesting to note that the maximum final deflection, which is obtained by setting x = Xo

and a(/) =al in (3.6), is given by u = !af:J2, and is independent of the value of the work
hardening parameter q.

4. SHORT BEAM UNDER CENTRAL IMPACT

For central impact Xo = O. Then the condition (2.18) for a short beam reduces to

(4.1)

For 1< t2 the solution is given by (2.12), (2.13) and (2.14) (with Xo = 0). At time 1 = t2 the two
propagating discontinuities reach the two ends of the beam simultaneously. At this instant the
slope of the beam is given by (2.14) as

a q x -q }(2-q )/q

w
2
/J(X)=-{(1+ a

l
) (1+;) -1 , (0 < x E; 1) (4.2)

with /J(- x) = - /J(x). By symmetry it is sufficient to consider the range 0 < x E; l.
For t > t2 we seek solutions in which a central segment -a(t) < x < a(/) of the beam moves

as a rigid body, but now the discontinuities at x =±a(t) have been reflected at x =±1 and
move inwards towards the centre of the beam. The outer segments are at rest, and a
deformation occurs as a discontinuity crosses a section of the beam. The assumed configuration
of the beam is shown schematically in Fig. 2, and the propagation of the discontinuities in the
(x, t) plane is illustrated in Fig. 3. The slope of the beam in the stationary segment a(t) < x < 1 is
denoted by 'Y = gl(x).

For I> 12, the governing equations are:

(a) Equation of motion of the segment - a < x < a:

(4.3)

(b) Dynamic jump condition at x = a:

(4.4)

y

c

-l -a(l) 0 a(t) I

Fig. 2. Central impact of a short beam with fixed ends. Assumed form of deformation after reflection of the
discontinuities.
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v =V(t)

~ =',(x)

V=O
~=O

-1 0 I x
Fig. 3. Central impact of a short beam with fixed ends. Trajectories of the discontinuities in the (x, t) plane.

(c) Kinematic jump condition at x = a:

(4.5)

In these, ft(x) is given by (4.2) and it is necessary to determine a(t), v(t) and g(x) subject to the
conditions a(l2) = 1 and, from (2.12),

(4.6)

An analytical solution of these equations does not seem to be possible for general values of
n. However, they simplify a great deal in the case of linear strain-hardening, n =1, q =1, and
for the remainder of this paper we consider this case only. The essential simplification is that for
linear strain-hardening a is constant in magnitude, with value a2= W2~-2. The trajectories of
the discontinuities in the (x, t) plane then become straight lines as illustrated in Fig. 4, which
also shows the trajectories if the discontinuities are further reflected at x =0 and x = ± 1. These
multiple reflections continue until v = 0 and the entire beam comes to rest.

For n = 1, t2 = ~/w and a\ = aw~. Then eqn (4.2) gives

w2ft(x) = _ {a(l +w~)-I} = _ aw~ - x,
x+a x+a

and (4.6) reduces to

In the range ~/w < t < 2~/w, we have

(4.7)

(4.8)

a = 2- wt/~,

Hence (4.3) becomes

ti = -w/~. (4.9)

2 • a(l + w~)
~(2+a-wtf~)v=-2 f

Q+a-wt,..,

and (4.4) and (4.5) both reduce to

(4.10)

(4.11)
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By integrating (4.10) and using the initial condtion (4.8), we obtain
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w{3v = 2aw{3 +a-I
a + 1

a(l +w{3)
2+a-(wtlfJ)

(4.12)

2aw{3 + a-I a(l + wf3}

a+l a+a

Hence, from (4.7), (4.11) and (4.13),

2 ( ) _ _ 2(aw{3 - 1)
w gt x-I .a+

(4.13)

(4.14)

Thus we have the rather remarkable result that the slope is constant in the outer segments
la I< Ixi < 1. The deflection is therefore easily calculated in these segments.

From (4.13) it follows that v = 0 when

a{2 - wfJ(a - I)}
a = .

2aw{3 +a-I
(4.15)

The beam comes to rest, and the deformation ceases, before the discontinuity returns to the
point of impact, if (4.15) yields a positive value of a. For q = 1, (4.1) reduces to awfJ> 1. Hence
the denominator of (4.15) is positive, and the condition for a to be positive is

wfJ(a -1) < 2. (4.16)

We note that this condition is always satisfied if a < 1, so the discontinuity never returns to the
point of impact if the mass of the striker is less than that of the beam.

If wfJ(a -1) > 2, then for wt > 213 discontinuities again propagate outwards from the centre
of the beam, as shown in Fig. 4. As the magnitude of the slope of the beam is uniform at
wt = 213, these discontinuities propagate into regions in which Qp is constant. Hence the theory
for 213 < wt < 413 is essentially the same as that for 0 < wt < 2{3, and the solution is readily
obtained by making the appropriate substitutions. For sufficiently large values of a and wfJ,
further reflections may occur, but these also involve no essentially new situations.

v:o

a:4-W'1

-1 0 I x
Fig. 4. Central impact of a short beam with fixed ends. Trajectories of the discontinuities in the (x, t) plane

for linear strain-hardening.
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The solution of this section can also be interpreted as the solution for a cantilever beam of
length L, built in at X = L and struck at its tip X = 0 by a mass M travelling with speed Vo in
the Y -direction.

5. SHORT BEAM WITH IMPACT AT X=Xo

We now return to the general case with impact at X = Xo= xoL and the condition (2.18)
satisfied. As in the case considered in Section 4, it is straightforward to formulate the equations
for t > f2 and general values of n, but analytical solution seems to be feasible only for the case
n = I of linear strain-hardening. In this case the trajectories of the discontinuities in the (x, t)

plane are straight lines with slope ± {31 w. The discontinuities may not cross the section x = xo,
for doing so would imply an instantaneous change in the speed of the mass 2M, and this can
only be effected by the application of an impulsive force. Therefore we seek solutions in which
the discontinuities are successively reflected each time they meet either the ends x = ± I of the
beam, or the mass at x = Xo, until the beam eventually comes to rest.

The motion is illustrated in the (x, t) plane in Fig. 5. At time t, there is a discontinuity at
x = Xo+ a(t) in the range Xo < x ~ I, and a discontinuity at x = Xo - b(t) in the range -I ~ x < Xo.

Each of these discontinuities propagates alternately outwards and inwards across its range with
constant speed wI{3. The segment Xo - b < x < Xo +a moves as a rigid body and the segments
Xo +a < x < 1 and -1 < x < Xo - b are at rest. As illustrated in Fig. 5, the slope l' is denoted
!,(x), g,(x), hs(x), ks(x), (r, S = 1, 2, 3, ...), in the various regions of the (x, t) plane.

Given a time t, there are values of rand s, which can be read off from Fig. 5, such that

l' = {hs(X),
!,(x),

xo-b(t)<x<Xo,

Xo < x < Xo+ a(t).
(5.1)

Then the equation of motion at time t of the segment Xo - b < x < Xo +a is

2S{3(kr.J!w ~ = k,;(x)

(5.2)

3f3l.I+xQJ!w

I
I

x =Xo+Q(t) I
I
I

{3(1-Xo)!W

V=O
~ =ko(xl= 0 ~ =gO<x):O

-I 0 Xu 1 x
Fig. 5. Non-central impact of a short beam with fixed ends. Trajectories of the discontinuities in the (x, t)

plane for linear strain-hardening.
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For linear hardening, the kinematic and dynamic jump conditions at x = xo+ a(t) become
identical, and are (see Fig. 5)

w{3v = w2{ - fr(xo+ a)+ gr-l(XO+ a)} when Ii =w/{3 >0, (5.3)

w{3v = w2{fr(Xo +a) - gr(XO +a)} when Ii =- w/{3 <0. (5.4)

Similarly, the jump conditions at Xo - b(t) give

w{3v =w2{h.(xo - b) - k.-l(XO - b)} when 6= w/{3 >0, (5.5)

w{3v = w2{- h.(xo - b) +ks(xo - b)} when 6= -w/{3 <0. (5.6)

There are four cases, which correspond to the four possible combinations of signs of Ii and
6. In general, these cases do not follow each other in any regular sequence, and the sequence in
which they do occur depends on the value of Xo. As an example, we obtain the solution for
0< Xo < ~ (which is the case illustrated in Fig. 5) up to time t = 2{3(1- xo)/w.

For 0 < wt < (3(1- xo), the solution is that given in Section 2, namely

Hence

w{3v = aw{3 - (wt/{3)
a +(wt/{3) ,

2 aw{:J-a
w/J(xo+a)=- ,

a+a

2 aw{3 - b
w h1(xo-b)= b .

+a

(5.7)

(5.8)

(5.9)

2f()- aw{3-x+xow 1 x -- ,
x-xo+a

(Xo <x < 1), (5.10)

2h () aw{3 - Xo +x
W 1 X = ,

Xo-x+a
(-1 +2xo < x < xo). (5.11)

If aw{:J > 1- Xo, the motion continues for wt > (3(1 - xo). Since, by assumption, 0 < Xo <
~, the discontinuity at x = Xo - b reaches the end x = - 1 before the reflected discontinuity at
x =Xo +a reaches x =Xo. Hence the second stage of the deformation takes place in the time
interval (:J(1- xo) < wt < (3(1 +xo), and in this interval, from Fig. 5

a = - wt/{3 +2(1- xo),

Then (5.2), (5.4) and (5.5), with r = 1, S = 1, give

b = wt/{3. (5.12)

(5.13)

(5.14)

(5.15)

It is convenient to use a rather than t as the independent variable. By eliminating h1(xo - b)
from (5.13) and (5.15), and introducing the expression (5.8) for !1(XO+ a), we obtain

{ dV} a(1 +w{:J)w{:J 2(a+l-xo)--v = 1+ .
da a+a

(5.16)
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This is a linear first order equation for v, to be solved subject to the condition that v IS

continuous at t = J3(1- xo)/w. From (5.7), this condition is

The required solution is

awJ3 - 1+ Xo
wJ3v = when a = l-xo.

a+l-xo'
(5.17)

a(1+wJ3) {a+a}[ (I) (I) { a+a }]wf3v = -1 + exp 2 exp - - + E1 - - E12(a + 1- xo) 2(a + I - xo) 2 2 2(a +1- xo) ,
(5.18)

where EM) is the exponential integral

(5.19)

which is tabulated in, for example, Abramowitz and Stegun (Ref. [7] of Part I).
From (5.10), (5.14) and (5.18) there follows

2 () 2(x - xo)+ a(1- wJ3)
w gl X =

x -Xo+a

_ a(1 +wJ3) exp { x - Xo +a }[2 exp (_!) + EI(!) _ EI{_X_-_xo_+_a}]
2(a + 1- xo) 2(a + 1- xo) 2 2 2(a +1- xo) ,

(5.20)

for 1- 2xo < x < 1. In the interval f3(1- xo) < wt < f3(1 + xo) we have, from (5.12) or from Fig. 5,
a = - b +2(1- xo). Hence from (5.15) and (5.18)

2h()- 1+ a(1+wf3) {a+2(1-Xo)-(Xo-X)}[2 (1) E (1)w 1 x - - exp exp - - + I -
2(a + 1- xo) 2(a + 1- xo) 2 2

_ E
1
{a +2(1- xo)-(xo- X)}]

2(a + l-xo)
(5.21)

for -1 < x < - 1+2xo.
The deformation terminates when v =O. If v =0 for a value of t less than f3(1 +xo)/w, then

the above results give the complete solution. Fig. 6 shows the variation of v with t for Xo = 0.2
and a number of values of a and awf3, and for t not exceeding J3(1 + xo)/w. In Fig. 6, v is given
by (5.7) for 0~ wt/f3 ~ 1- Xo, and by (5.18) for 1- Xo ~ wt/f3 ~ 1+ Xo.

If (5.18) gives v> 0 at t = f3(1 +xo)/w (that is, a = 1- 3xo), then the deformation proceeds to
the third stage which, from Fig. 5, takes place in the time interval f3(1 + xo) < wt < 2f3(1- xo). In
this interval

a = 2(1- xo) - wt/J3,

and (5.2), (5.4) and (5.6) give

b = 2(1 + xo) - wt/J3, (5.22)

(5.23)

(5.24)

(5.25)

Since J.(x) and hl(x) have been determined already, eqn (5.23), together with the
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III V

C~(l( =02

a '--~--!;.2-""--';=--;!:--~---!~=-"''::-'::::::::::::-'1l,,'2- J£.!
(":CO> f3

(a)

(b)

(c)

Fig. 6. Variation of the speed v with time t for impact at x '" 0.2 of a short beam for (a) a == 0.2, (b) IX == 1.0,
(c) «==4.0.
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condition that v is continuous at wt =PO +xo), determines v. The functions gl(x) for xo < x <
1- 2xo, and kt(.t) for -I < x < - 3xo, are then obtained from (5.24) and (5.25). Integral ex
pressions for v, gt(x) and kt(x) are readily obtained, but as these are complicated and not very
revealing they are not stated explicitly.

It is clear that the complexity of the solution increases rapidly as the deformation
progresses, even in the linear strain-hardening case. However, the numerical results given in
Fig. 6 and the simpler analysis of Section 4 for the case Xo =0 shows that mUltiple reflections
occur only when 0: and wfJ are quite large, and that most cases of interest are covered by the
comparatively simple analysis of the first two stages of the deformation.



844 L. SHAW and A. 1. M. SPENCER

Acknowledgement-One of the authors (L.S.) thanks the Science Research Council for the award of a Research
Studentship.

REFERENCES
I. Linda Shaw and A. J. M. Spencer, Impulsive loading of ideal fibre-reinforced rigid-plastic beams-I. Free beam under

central impact. Int. 1. Solids Structures 13,823-831 (1977).
2. N. Jones, Dynamic behaviour of ideal fibre-reinforced rigid-plastic beams. J. Appl. Mech. 98, 319 (1976).


